Telegram Group & Telegram Channel
This media is not supported in your browser
VIEW IN TELEGRAM
๐Š-๐Œ๐ž๐š๐ง๐ฌ ๐‚๐ฅ๐ฎ๐ฌ๐ญ๐ž๐ซ๐ข๐ง๐  ๐„๐ฑ๐ฉ๐ฅ๐š๐ข๐ง๐ž๐ - ๐Ÿ๐จ๐ซ ๐›๐ž๐ ๐ข๐ง๐ง๐ž๐ซ๐ฌ

๐–๐ก๐š๐ญ ๐ข๐ฌ ๐Š-๐Œ๐ž๐š๐ง๐ฌ?
Itโ€™s an unsupervised machine learning algorithm that automatically groups your data into K similar clusters without labels. It finds hidden patterns using distance-based similarity.

๐ˆ๐ง๐ญ๐ฎ๐ข๐ญ๐ข๐ฏ๐ž ๐ž๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž:
You run a mall. Your data has:
โ€บ Age
โ€บ Annual Income
โ€บ Spending Score

K-Means can divide customers into:
โคท Budget Shoppers
โคท Mid-Range Customers
โคท High-End Spenders

๐‡๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌ:
โ‘  Choose the number of clusters K
โ‘ก Randomly initialize K centroids
โ‘ข Assign each point to its nearest centroid
โ‘ฃ Move centroids to the mean of their assigned points
โ‘ค Repeat until centroids donโ€™t move (convergence)

๐Ž๐›๐ฃ๐ž๐œ๐ญ๐ข๐ฏ๐ž:
Minimize the total squared distance between data points and their cluster centroids
๐‰ = ฮฃโ€–๐ฑแตข - ฮผโฑผโ€–ยฒ
Where ๐ฑแตข = data point, ฮผโฑผ = cluster center

๐‡๐จ๐ฐ ๐ญ๐จ ๐ฉ๐ข๐œ๐ค ๐Š:
Use the Elbow Method
โคท Plot K vs. total within-cluster variance
โคท The โ€œelbowโ€ in the curve = ideal number of clusters

๐‚๐จ๐๐ž ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž (๐’๐œ๐ข๐ค๐ข๐ญ-๐‹๐ž๐š๐ซ๐ง):

from sklearn.cluster import KMeans
X = [[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]
model = KMeans(n_clusters=2, random_state=0)
model.fit(X)
print(model.labels_)
print(model.cluster_centers_)


๐๐ž๐ฌ๐ญ ๐”๐ฌ๐ž ๐‚๐š๐ฌ๐ž๐ฌ:
โคท Customer segmentation
โคท Image compression
โคท Market analysis
โคท Social network analysis

๐‹๐ข๐ฆ๐ข๐ญ๐š๐ญ๐ข๐จ๐ง๐ฌ:
โ€บ Sensitive to outliers
โ€บ Requires you to predefine K
โ€บ Works best with spherical clusters

https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A ๐Ÿ“ฑ
Please open Telegram to view this post
VIEW IN TELEGRAM



tg-me.com/CodeProgrammer/3768
Create:
Last Update:

๐Š-๐Œ๐ž๐š๐ง๐ฌ ๐‚๐ฅ๐ฎ๐ฌ๐ญ๐ž๐ซ๐ข๐ง๐  ๐„๐ฑ๐ฉ๐ฅ๐š๐ข๐ง๐ž๐ - ๐Ÿ๐จ๐ซ ๐›๐ž๐ ๐ข๐ง๐ง๐ž๐ซ๐ฌ

๐–๐ก๐š๐ญ ๐ข๐ฌ ๐Š-๐Œ๐ž๐š๐ง๐ฌ?
Itโ€™s an unsupervised machine learning algorithm that automatically groups your data into K similar clusters without labels. It finds hidden patterns using distance-based similarity.

๐ˆ๐ง๐ญ๐ฎ๐ข๐ญ๐ข๐ฏ๐ž ๐ž๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž:
You run a mall. Your data has:
โ€บ Age
โ€บ Annual Income
โ€บ Spending Score

K-Means can divide customers into:
โคท Budget Shoppers
โคท Mid-Range Customers
โคท High-End Spenders

๐‡๐จ๐ฐ ๐ข๐ญ ๐ฐ๐จ๐ซ๐ค๐ฌ:
โ‘  Choose the number of clusters K
โ‘ก Randomly initialize K centroids
โ‘ข Assign each point to its nearest centroid
โ‘ฃ Move centroids to the mean of their assigned points
โ‘ค Repeat until centroids donโ€™t move (convergence)

๐Ž๐›๐ฃ๐ž๐œ๐ญ๐ข๐ฏ๐ž:
Minimize the total squared distance between data points and their cluster centroids
๐‰ = ฮฃโ€–๐ฑแตข - ฮผโฑผโ€–ยฒ
Where ๐ฑแตข = data point, ฮผโฑผ = cluster center

๐‡๐จ๐ฐ ๐ญ๐จ ๐ฉ๐ข๐œ๐ค ๐Š:
Use the Elbow Method
โคท Plot K vs. total within-cluster variance
โคท The โ€œelbowโ€ in the curve = ideal number of clusters

๐‚๐จ๐๐ž ๐„๐ฑ๐š๐ฆ๐ฉ๐ฅ๐ž (๐’๐œ๐ข๐ค๐ข๐ญ-๐‹๐ž๐š๐ซ๐ง):

from sklearn.cluster import KMeans
X = [[1, 2], [1, 4], [1, 0], [10, 2], [10, 4], [10, 0]]
model = KMeans(n_clusters=2, random_state=0)
model.fit(X)
print(model.labels_)
print(model.cluster_centers_)


๐๐ž๐ฌ๐ญ ๐”๐ฌ๐ž ๐‚๐š๐ฌ๐ž๐ฌ:
โคท Customer segmentation
โคท Image compression
โคท Market analysis
โคท Social network analysis

๐‹๐ข๐ฆ๐ข๐ญ๐š๐ญ๐ข๐จ๐ง๐ฌ:
โ€บ Sensitive to outliers
โ€บ Requires you to predefine K
โ€บ Works best with spherical clusters

https://whatsapp.com/channel/0029VaC7Weq29753hpcggW2A ๐Ÿ“ฑ

BY Python | Machine Learning | Coding | R


Warning: Undefined variable $i in /var/www/tg-me/post.php on line 283

Share with your friend now:
tg-me.com/CodeProgrammer/3768

View MORE
Open in Telegram


Python | Machine Learning | Coding | R Telegram | DID YOU KNOW?

Date: |

Look for Channels Online

You guessed it โ€“ the internet is your friend. A good place to start looking for Telegram channels is Reddit. This is one of the biggest sites on the internet, with millions of communities, including those from Telegram.Then, you can search one of the many dedicated websites for Telegram channel searching. One of them is telegram-group.com. This website has many categories and a really simple user interface. Another great site is telegram channels.me. It has even more channels than the previous one, and an even better user experience.These are just some of the many available websites. You can look them up online if youโ€™re not satisfied with these two. All of these sites list only public channels. If you want to join a private channel, youโ€™ll have to ask one of its members to invite you.

The Singapore stock market has alternated between positive and negative finishes through the last five trading days since the end of the two-day winning streak in which it had added more than a dozen points or 0.4 percent. The Straits Times Index now sits just above the 3,060-point plateau and it's likely to see a narrow trading range on Monday.

Python | Machine Learning | Coding | R from br


Telegram Python | Machine Learning | Coding | R
FROM USA